
 1

SOMO: Self-Organized Metadata Overlay
for Resource Management in P2P DHT

Abstract – In this paper, we first describe the concept of data
overlay, which is a mechanism to implement arbitrary data
structure on top of any structured P2P DHT. With this
abstraction, we developed a highly scalable, efficient and
robust infrastructure, called SOMO, to perform resource
management for P2P DHT. It does so by gathering and
disseminating system metadata in O(logN) time with a self-
organizing and self-healing data overlay. Our preliminary
results of using SOMO to balance routing traffic with node
capacities in a prefix-based overlay have demonstrated the
utility of data overlay as well as the potential of SOMO.

1 Introduction
For a large P2P overlay to adapt and evolve, there must be a
parallel infrastructure to monitor the health of the system (e.g.
“top”-like utility in UNIX). The responsibility of such
infrastructure is to gather from and distribute to entities
comprising the system whatever system metadata of concern,
and possibly serve as the channel to communicate various
scheduling instructions. The challenge here is that this
infrastructure must be embedded in the hosting DHT but is
otherwise agonistic to its specific protocols and performance;
it must grow along with the hosting DHT system; it must also
be fault resilient and, finally, the information gathered and/or
disseminated should be as accurate as possible.

In this paper, we describe the Self-Organized Metadata
Overlay, or SOMO in short, which accomplishes the above
goal. By using hierarchy as well as soft-state, SOMO is self-
organizing and self-healing, and can gather and disseminate
information in O(logN) time. SOMO is simple and flexible,
and is agnostic to both the hosting P2P DHT and the data
being gathered and disseminated. The later attribute allows it
to be programmable, invoking appropriate actions such as
merge-sort and aggregation as data flows through.

Through the development of SOMO, we have discovered that
there is a consistent and simple mechanism to implement
arbitrary data structure on top of a P2P DHT. We refer to a
data structure that is distributed onto a DHT a data overlay.
Data overlay is discussed in Section-2. Following that, we
describe the construction and operations of SOMO in Section-
3, and also its application in Section-4. A case study of using
SOMO to balance routing traffic to node capacity in a prefix-
based overlay is offered in Section-5, along with preliminary

* Work done as intern in MSR-Asia.

results. Related works are discussed in Section-6, and we
conclude in Section-7.

2 Data Overlay: Implement Arbitrary Data
Structures on top of P2P DHT

We observe that hash-table is only one of the fundamental
data structures. Sorted list, binary trees and queues etc. all
have their significant utilities. One way would be to
investigate how to make each of them self-organized (i.e., P2P
sorted list). Another is to build on top of a hash table that
already has the self-organizing property (i.e. P2P DHT). This
second approach, which we call data overlay, is what we take
in this paper.

Any object of a data structure can be considered as a
document. Therefore, as long as it has a key, that object can be
deposited into and retrieved from a P2P DHT. Objects relate
to each other via pointers, so to traverse to the object b pointed
by a.foo, a.foo must now store b’s key instead. More formally,
the following two are the necessary and sufficient conditions:

• Each object must have a key, obtained at its birth

• If an attribute of an object, a.foo, is a pointer, it is expanded
into a structure of two fields: a.foo.key and a.foo.host. The
first substitutes the hard-wired address of a conventional
pointer; and the second field is a soft state containing the
last known hosting DHT node of the object a.foo points to
and serves as a routing shortcut.

It is possible to control the generation of object’s key to
explore data locality in a DHT. For instance, if the keys of a
and b are close enough, it’s likely that they will be hosted on
the same machine in DHT.

We call a data structure distributed in a hosting DHT a data
overlay. It differs from traditional sense of overlay in that
traversing (or routing) from one entity to another uses the free
service of the underlying P2P DHT.

Figure 1: implement arbitrary data structure in DHT.

Figure 1 contrasts a data structure in local machine versus that
on a P2P DHT. Important primitives that manipulate a pointer
in a data structure, including setref, deref (dereferencing) and

Zheng Zhang
Microsoft Research China
zzhang@microsoft.com

Shu-Ming Shi* and Jing Zhu*
CS Dept. Tsinghua University

{ssm99, zhujing00}@mails.tsinghua.edu.cn

 2

delete, are outlined in Figure 2. Here, we assume that both
DHT_lookup and DHT_insert will, as a side effect, always
return the node in DHT that currently hosts the target object.
DHT_direct bypasses normal DHT_lookup routing and
directly seeks to the node that hosting an object given its key.

Figure 2: pointer manipulate primitives in data-overlay

The interesting aspect is that it is now possible to host any
arbitrary data structure on a P2P DHT, and in a transparent
way. What need to be modified are the library routine that
creates an object to insert a key as its member, and the few
primitives that manipulate pointers as outlined. Therefore,
legacy applications can be ported to run on top of a P2P DHT,
giving them the illusion of an infinite storage space (here
storage can broadly include memory heaps of machines
comprising the DHT). The host routing shortcut makes the
performance independent of the underlying DHT when the
overall system dynamism is small.

A data overlay on top of a bare-bone P2P DHT with no
internal reliability support can be used to implement
distributed data structure that is soft-state in nature (i.e,, data is
periodically refreshed and consumed thereafter without ill
side-effect). If advanced fault-tolerant techniques are
employed, then data overlay can spawn even more interesting
research threads. For instance, it maybe possible to turn DHT
into a parallel computing utility by building a globally
accessible and fully-associative memory heap that as a
repository of shared-variables [14].

3 Self-Organized Metadata Overlay
We now describe the data overlay SOMO (Self-Organized
Metadata Overlay), an information gathering and
disseminating infrastructure on top of any P2P DHT. Such an
infrastructure must satisfy a few key properties: self-
organizing at the same scale as the hosting DHT, fully
distributed and self-healing, and be as accurate as possible of
the metadata gathered.

Such metadata overlay can take a number of topologies. Given
that one of the most important functionalities is aggregation,
our implemented SOMO is a tree of k degree whose leaves are

planted in each DHT node. Information is gathered from the
bottom and propagates towards the root, and disseminated by
trickling downwards. Thus, one can think of SOMO as doing
converge cast from the leaves to the root, and then multicast
back down to the leaves again. Both the gathering and
dissemination phases are O(logkN) bounded, where N is total
number of entities. Each operation in SOMO involves no more
than k+1 interactions, making it fully distributed. We deal
with robustness using the principle of soft-state, so that data
can be regenerated in O(logkN) time. The SOMO tree self-
organizes and self-heals in the same time bound. We now
explain the details of SOMO.

3.1 Building SOMO
Since SOMO is a tree, we call its node the SOMO node. To
avoid confusion, we denote the DHT nodes as simply the DHT
node. A DHT node that hosts a SOMO node s, is referred to as
DHT_host(s).

Figure 3: SOMO node data structure

The basic structure of the type SOMO_node is described in
Figure 3. The member Z indicates the region of which this
node’s report member covers. Here, the region is simply a
portion of the total logical space of the DHT. The root SOMO
node covers the entire logical space. The key is produced by a
deterministic function of a SOMO node’s region Z. Examples
of such functions include the center of the region, or a hash of
the region coordinates (see Figure 4). Therefore, a SOMO
node s will be hosted by a DHT node that covers s.key (e.g.
the center of s.Z). This allows a SOMO node to be retrieved
deterministically as long as we know its region and is
particularly useful when we want to query system status in a
given key-space range. A SOMO node’s responsible region is
further divided by a factor of k, each taken by one of its k
children, which are pointers in the SOMO data structure. A
SOMO node s’s i-th child will cover the i-th fraction of region
s.Z. This recursion continues until termination condition is met
(discussed shortly), and since a DHT node will own a piece of
the logical space, it is therefore guaranteed a leaf SOMO node
will be planed in it.

Initially, when the system contains only one DHT node, there
is only the SOMO root. As the DHT system grows, SOMO
builds its hierarchy along. This is done by letting each SOMO
node periodically execute the routine SOMO_grow, shown in
Figure 4.

We test first if the SOMO node’s responsible zone is smaller
or equal to that of the hosting DHT node, if the test comes out
to be true, then this SOMO node is already a leaf planted in
the right DHT node and there is no point to grow any more
children. Otherwise, we attempt to grow. Note that we
initialize a SOMO node object and its appropriate fields, and

setref(a.foo, b) { // initially a.foo==null; b is the object
 // to which a.foo will points to
 a.foo.key=b.key
 a.foo.host= DHT_insert(b.key, b)
}
deref(a.foo) { // return the object pointed to by a.foo
 if (a.foo≠null) {

obj=DHT_direct(a.foo.host, a.foo.key)
if obj==null { // object has moved
 obj=DHT_lookup(a.foo.key)
 a.foo.host = node returned
}
return obj
else return “non-existed”

 }
}
delete(a.foo) { // delete the object pointed to by a.foo
 DHT_delete(a.foo.key)
 a.foo=null
}

struct SOMO_node {
 string key
 struct SOMO_node *child[1..k]
 DHT_zone_type Z
 SOMO_op op
 Report_type report
}

 3

then call the setref primitive (See Figure-2) to install the
pointer; this last step is where DHT operation is involved.

Figure 4: SOMO_grow procedure and the SOMO_loc procedure
which deterministically calculates a SOMO node’s key given the
region it covers.

As this procedure is executed by all SOMO nodes, the SOMO
tree will grow as the hosting DHT grows, and the SOMO tree
is taller in logical space regions where DHT nodes are denser.
This is illustrated in Figure-5.

Figure 5: SOMO tree on top of P2P DHT

The procedure is done in a top down fashion, and is executed
periodically. A bottom-up version can be similarly derived.
When the system shrinks, SOMO tree will prune itself
accordingly by deleting redundant children. For an N-node
system where nodes populate the total logical space evenly,
there will be 2N SOMO-nodes when the SOMO fan-out k is 2.

The crash of a DHT node will take away the SOMO nodes it is
hosting. However, the crashing node’s zone will be taken over
by another DHT node after repair. Consequently, the
periodical checking of all children SOMO nodes ensures that
the tree can be completely reconstructed in O(logkN) time.
Because the SOMO root is always hosted by the DHT node
that owns one deterministic point of the total space, that node
ensures the existence of the SOMO root and invokes the
SOMO_grow routine on the SOMO root.

3.2 Gathering and disseminate information with
SOMO

To gather system metadata, for instance loads and capacities, a
SOMO node periodically requests report from its children.
The leaf SOMO nodes simply get the required info from their
hosting DHT nodes. As a side-effect, it will also re-start a

child SOMO node if it has disappeared because the hosting
DHT node’s crash. Figure 5 illustrates the procedure.

Figure 5: SOMO gathering procedure

The routine is periodically executed at an interval of T. Thus,
information is gathered from the SOMO leaves and flows to
its root with a maximum delay of logkN⋅T. This bound is
derived when flows between hierarchies are completely
unsynchronized. If upper SOMO nodes’ call immediately
triggers the similar actions of their children, then the latency
can be reduced to T+thop⋅logkN, where thop is average latency of
a trip in the hosting DHT. The unsynchronized flow has
latency bound of logkN⋅T, whereas the synchronized version
will be bounded by T in practice (e.g., 5 minutes). Note that
O(thop ⋅logkN) is the absolute lower bound. For 2M nodes and
with k=8 and a typical latency of 200ms per DHT hop, the
SOMO root will have a global view with a lag of 1.6s.

Dissemination using SOMO is essentially the reverse: data
trickles down through the SOMO hierarchy towards the leaves.
Performance is therefore similar to gathering. By some
modification, dissemination can piggyback on the return
message in the gathering phase. The other alternative is to
query the SOMO tree. Since SOMO is hierarchical, it is easy
to form complex range queries to discover information
relevant to a given logical space region. For example, if k is 2
and we wish to get status report of the first ¼ of the space, we
need only to obtain report from the left child of the 2nd level
SOMO tree. An even more interesting alternative will be to
register queries at SOMO nodes, which essentially transforms
SOMO into a pub/sub infrastructure.

Operations in either gathering or disseminating phases involve
one interaction with the parent, and then with k children. Thus,
the overhead in a SOMO operation is a constant. The entities
involved are the DHT nodes that host the SOMO tree. SOMO
nodes are scattered among DHT nodes and therefore SOMO
processing is distributed and scales with the system.

It seems that towards the SOMO root the hosting DHT nodes
need to have increasingly higher bandwidth and stability. As
discussed earlier, stability is not a concern because the whole
SOMO hierarchy can be recovered in O(logkN) time. As for
bandwidth, most of the time one needs only to submit delta
between reports (Figure 5). Compression will further bring
down message size. Finally, it is always possible to locate an
appropriate node through SOMO. This node can swap with the
one who is hosting the SOMO root currently. That is to say,
SOMO can be self-optimizing as well.

3.3 Discussion
The power of SOMO lies in its simplicity and flexibility: it
specifies neither the type of information it should gather
and/or disseminate, nor the operation invoked to process them.

get_report (SOMO_node s) {
 Report_type rep[1..k]
 for i∈ [1..k]

if (s.child[i] ≠ NULL) // retrieving via DHT
 rep[i] = deref(s.child[i]).report

 s.report = s.op(rep[])
}

SOMO_grow(SOMO_node s) {
 // check if any children is necessary
 if (s.Z⊆ DHT_host(s).Z) return
 for i=1 to k

if (s.child[i]==NULL &&
 the i-th sub-space of s.Z ⊄ host(s).Z) {
 t = new(type SOMO_node)
 t.Z = the i-th sub-space of s.Z
 t.key = SOMO_loc(t.Z)
 setref(s.child[i], t) // inject into DHT
}

}
SOMO_loc(DHT_zone_type Z) {
 return center of Z
 // optionally
 // return hash_of (Z)
}

Total logical space SOMO node

reportlastreportthis __ ∩=∆

DHT node

 4

That is to say, SOMO operations are programmable and active.
For this reason, in the pseudo-code we have used op as a
generic notation for operation used. Using the abstraction of
data overlay (especially the host routing shortcut), its
performance is also insensitive to the hosting DHT.

We have described SOMO in a collaborative environment to
start with. If there are malicious nodes, then the
trustworthiness of SOMO itself is under doubt. We offer some
of our preliminary thoughts here:

• Denial-of-service attacks can be mounted by relentlessly
requesting SOMO root. We believe an efficient way to
defend against this is by propagating copies throughout the
network, thereby stopping the attacks on the system edge.
This borrows the idea from Freenet[2].

• SOMO reports can be compromised in multiple ways on the
paths of aggregation and dissemination. To guard against
this, reports must be signed and redundant SOMO reports
need to be generated through multiple SOMO internal nodes,
and use voting for consensus and intruder detection.

• Finally, the most difficult attack to solve is that individual
node can simply cheat about its own status. Feedback
processes among peers external to SOMO should be used to
establish trustworthiness of each node.

4 Application of SOMO
As a scalable, fault-tolerant metadata gathering and
dissemination infrastructure, the utilities of SOMO are many.
In a large scale system, the need to monitor the health of the
system itself can not be understated. We have implemented a
SOMO-based global performance monitor with which we
monitor the servers in our lab on a daily basis. This tool
employs SOMO built over a P2P DHT and gathers data from
various performance counter on each machine and presents a
unified UI interface to clients. We tested the SOMO stability
by unplugging cables of servers being monitored, and each
time the global view is regenerated after a short jitter. Using
the data overlay abstraction, the SOMO layer is implemented
much like any local procedures, with only a few hundred lines
of code.

More advanced usages are chiefly decided by algorithms that
built upon the metadata that gathered. It is possible to build a
SOMO on top of a basic, mesh-based P2P DHT, and then
build a O(logN) soft-state prefix-based overlay by installing
long-range entries because SOMO provides the knowledge of
what nodes exist in what portion of the total logic space. Even
more useful is the fact that SOMO can create an image of a
single resource pool comprised of nodes forming the DHT.

Another instance would be to find powerful nodes, commonly
known as supernodes. To do this, we will make a SOMO tree
where the report type is sorted list, and the op is merge-sort.
Thus, SOMO can mine out multiple classes of supernodes, as
reports available at various internal SOMO nodes, with the
SOMO root having the complete list. These supernodes can
thus act as indexing [6] or routing hobs [17]. There are also
proposals where routing performance is the best but storage
uniformity is sacrificed [8], SOMO can discover the density

map of node capacities. Such information can guide document
placement, or migrate nodes from dense regions to weak ones.
In this way, uniformity will improve over time. We have also
mentioned the possibility of turning SOMO into a pub/sub
infrastructure.

5 Case Study: Balancing Routing Power with
Routing Traffic in Prefix-Based Overlay
Prefix-based overlay includes Tapestry[16], Pastry[9],
Chord[11], Kademlia[5] and eCAN[13] (CAN[7] with simple
extension). Though some aspects of these proposals differ,
they share a few key attributes: 1) the total logical (or key)
space is recursively divided and 2) routing greedily seeks out
the biggest span into a sub-space and then zoom in towards
target quickly. Routing table of prefix-based overlay is an
array, recording spaces of exponentially decreasing size and
one or several nodes that serve as this node’s gateway, or
“router” into these spaces. The flexibility of the prefix-based
overlays is that, any node in the target sub-space can be a
router. This gives rise to many optimization opportunities.
Pastry and eCAN explore the possibilities of using the
geographically closest node as router candidates to improve
routing performance. In this paper, we report our investigation
on another complementary axis: choosing the more powerful
nodes to serve as routing entrances for larger sub-spaces
where traffics are exponentially more than sub-spaces further
enclosed. The ultimate solution (and challenge) of selecting
these “routers” is to consider all the following three factors:
geographic vicinity, routing capacity and load distribution.
This remains to be one of our future works.

Our goal is to promote the most capable nodes to handle
traffics into larger space, relieving weaker nodes off these
responsibilities. Intuitively, the most powerful nodes will take
the bulk of the loads in the largest enclosing space, and the
weaker ones will serve no more than those designated to its
immediate neighbor. Due to space limitation, we refer readers
to [15] for the full protocol. Our basic idea is to classify
routing loads that a node takes according to the sub-space in
which the routing is designated and divide a node’s routing
capacity accordingly. The end-goal is that each sub-space’s
load/capacity ratio approaches that of the whole system.

Our optimization consists of four algorithms:

• Statistic collection algorithm. Aggregate loads and
capacity statistics in a bottom-up sweep through SOMO.
The goal is to have a “view” of the demographic distribution
of both loads and capacities. At this point, the load/capacity
ratios of the whole system as well as all enclosing spaces are
available.

• Load balance algorithm. Top-down sweep to determine
the amount of routing capacities to be dedicated in each
space, so that its load/capacity ratio approaches to that of the
whole system where possible.

• Capacity selection algorithm. Select the right portion of
capacities, as recommended by the previous step, from
candidate nodes. Also bottom-up sweep. At the end of this

 5

algorithm, we have selected the right capacity divide
responsible for traffic loads of different space.

• Entries dissemination algorithm. Notify other nodes to
use these new “routers” so that load distribution can take
effect.

The core of our algorithm is in the 2nd and the 3rd step. It can
be simplified if not for a subtle but important issue. The load
and capacity distribution can be so skewed that nodes in a sub-
space are already overwhelmed by the traffic designated to
them, leaving them virtually no surplus power to share routing
duties in enclosing spaces. Our scheduling algorithm has taken
this into full account by pardoning heavily loaded sub-spaces
(or the ones with meager power).

We modify an earlier e/CAN simulator by incorporating all
the four algorithms described earlier. eCAN[13] is a prefix-
based overlay capable of O(lnN) routing performance, and this
is achieved with simple extension to CAN[2]. In eCAN, the
recursion in resolving routing is by zooming into topology
sub-zones rather than shifting bits. However, our algorithm is
immediately applicable to other prefix-based overlays such as
Pastry [9], Tapestry [16] and Kademlia [5].

���

����

���

�����

�����

�	

��	

��	

��	

��	

��	

� �� ��� ���� �����

���������	
�������

�
�
�
�
�
�
�
�
�
�
	

�
	
�

�
�

 (a) Gnutella-like

�

��

���

����

�����

� ��� ���� ���� ���� ����

���������	
������

�
�
�
�
�
�
�
�
�
	

�
�

(b) Zipf-like

Figure 7: Capacity profile (N=2K)

Two capacity profiles are used to model heterogeneity:

� Zipf-like: when sorted, the i-th node has capacity
10000·i-β, we choose β be 1.2 by default.

� Gnutella-like: there are 5 levels of node, and the i-
th level has capacity 10i-1, popularity in these levels
are 20%, 45%, 30%, 4.9% and 0.1%, going from
level 1 to level 5 (see [10]).

The comparison of the two distributions for a 2K node system
is shown in Figure 7.

The eCAN configuration we use is equivalent to
Pastry/Tapestry of b=1. We tested other configurations [15]
and results are similar to those presented here. For each
configuration (capacity profile, N and other parameters), an
experiment of 5 cycles is run. Each cycle starts with a
complete reshuffling of the node capacities, then route 100N
times, during which load and capacity information are
gathered. We then run the four algorithms to perform load
balance. Finally another 100N routings are performed and
various statistics are collected again. This somewhat primitive
setup allows us to gain sufficient insight of the algorithms; a
more sophisticated one would include node join and leave
events and mix SOMO traffics with normal routing, which we
plan to conduct in the future.

We found that, in all configurations, load balance converges
quickly in O(log N) time, and that after the full set of the

algorithms are run, higher capacity nodes are taking more
loads. Figure 8 and Figure 9 show a typical pair of results of
the Gnutella-like and Zipf-like capacity distributions,
respectively. Note the sharp difference before and after the
load redistribution.

�

��

���

����

�����

������

� �� ��� ���� �����

���������	
��

�
�
�
�
�
�
�
�
�

 (a) Before

�

��

���

����

�����

������

� �� ��� ���� �����

���������	
��

�
�
�
�
�
�
�
�
�

(b) After

Figure 8: Results of N=2K, Gnutella-like (the line
corresponds to average load of a capacity level)

�

��

���

����

�����

������

� �� ��� ���� �����

���������	
��

�
�
�
�
�
�
�
�
�

 (a) Before

�

��

���

����

�����

������

� �� ��� ���� �����

���������	
��

�
�
�
�
�
�
�
�
�

(b) After

Figure 9: Results of N=2K, Zipf-like

6 Related work
Data overlay relies on the key property of the P2P DHT
([9][16][11][7][5][13]) that an item with unique key can be
reliably created and retrieved. To our knowledge, extending
the principle of self-organizing to arbitrary data structure other
than hash table and do it in a way that is agnostic to both
semantics and performance of the hosting P2P DHT is new.

A pure “peer-to-peer” mindset will view hierarchy as
forbidden word. We believe this is misleading as important
functionalities such as aggregation and indexing [6][1]
inherently imply a hierarchical structure. On this, SOMO
bears the most similarity to Astrolabe [12], a peer-to-peer
management and data mining system, for instance the use of
hierarchies and aggregation. SOMO operates at the
rudimentary data structure level while Astrolabe is on a virtual,
hierarchical database. SOMO’s extensibility is much like that
of active network, whereas Astrolabe uses SQL queries. The
marked difference is that SOMO is designed specifically on
top of P2P DHT, for two reasons: 1) we believe P2P DHTs
have established a foundation over which many other systems
can be built and thus there is a need for a scalable resource
management and monitoring infrastructure and 2) by
leveraging P2P DHT (in fact, data overlay) the design and
protocols of such infrastructure can be much simpler.
Distributed, in-network query processing has also been
investigated in apparently unrelated fields such as sensor
network, though the emphasis there is quite different [2].

The other alternative to build an aggregation and
dissemination tree would be to use the application-level
multicasting tree such as the one proposed by Scribe [2] and
Bayeux [18]. These trees are formed by joining routes from

 6

individual nodes to the root and, as a result, are unstructured
as opposed to SOMO. The maintenance of the tree would
either require each tree node to keep states in the form of
pointers to its children, or let DHT nodes route to the root
periodically to refresh the tree structure. In SOMO, every node
is uniquely identified by the region that its report covers and
therefore requires zero states. The structured nature of SOMO
also allows queries to arbitrary sub-region of the total space,
which would be otherwise impossible.

7 Conclusion and Future work
This paper makes several novel contributions: we describe
how arbitrary data structures can be implemented on P2P DHT
using the concept of data overlay; we designed and evaluated
a self-organizing and robust metadata gathering and
dissemination infrastructure SOMO. We have demonstrated
how to balance routing traffic with node capacity in prefix-
based overlay using both of these two techniques. Our future
work includes more extensive study of these concepts.

8 Acknowledgement
The authors would like to thank Yu Chen and Qiao Lian for
their insightful discussion. Dan Zhao helped to prepare this
report as well. We also thank the anonymous reviewers for
their useful comments.

References
[1] Adamic, L., Huberman, B., Lukose, R., and Puniyani, A.

Search in Power Law Networks, Physical Review.
E64(2001), 46135-46143

[2] Castro M., Druschel P., Kermarrec A., and Rowstron A.
SCRIBE: A Large-scale and Decentralized Application-level
Multicast Infrastructure. IEEE Journal on Selected Areas in
Communications, Vol. 20. No 8. Oct. 2002

[3] Clarke, I., et al. Freenet: A distributed anonymous information
storage and retrieval system. In Workshop on Design Issues in
Anonymity and Unobservability. 2000. Berkeley, CA, USA.

[4] Madden, S and et al. TAG: A Tiny AGregation Service for Ad-
Hoc Sensor Networks. OSDI’02

[5] Maymounkov, P. and Mazieres D. Kademlia: a Peer-to-Peer
Information System Based on the XOR Metric. In 1st
International Workshop on Peer-to-Peer Systems (IPTPS’02),
(Cambridge, MA March 2002)

[6] Qin Lv and Sylvia Ratnasamy, Can Heterogeneity Make
Gnutella Scalable? Proceedings of IPTPS 2002

[7] Ratnasamy, S., et al. A Scalable Content-Addressable Network.
In ACM SIGCOMM. 2001. San Diego, CA, USA.

[8] Ratnasamy, S., et al. Location-Aware Overlay Construction and
Server Selection. In Infocom. 2002.

[9] Rowstron, A. and P. Druschel. Pastry: Scalable, distributed
object location and routing for largescale peer-to-peer systems.
in IFIP/ACM Middleware. 2001. Heidelberg, Germany.

[10] Saroiu, S., Gummadi, K., and Gribble, S. A measurement study
of peer-to-peer file sharing systems. In Proceedings of
Multimedia Conferencing and Networking (San Jose, Jan.
2002)

[11] Stoica, I., et al. Chord: A scalable peer-to-peer lookup service
for Internet applications. In ACM SIGCOMM. 2001. San Diego,
CA, USA.

[12] Van Renesse, Robert and Birman Kenneth. Scalable
Management and Data Mining using Astrolabe. Proceedings of
IPTPS 2002.

[13] Xu, Zhichen and Zhang, Zheng, Building Low-maintenance
Expressways for P2P Systems, available at
http://www.hpl.hp.com/techreports/2002/HPL-2002-41.html,
March 2002

[14] Zhang, Z., Turning P2P DHT into a Parallel Computing Utility.
Submitted for publication.

[15] Zhang, Zheng, Shi, Shu-ming and Zhu, Jing. Self-balanced P2P
expressway: when Marxism meets Confucian. MSR-TR-2002-
72

[16] Zhao, B., Kubiatowicz, J.D., and Josep, A.D. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Tech. Rep. UCB/CSD-01-1141, UC Berkeley, EECS, 2001.

[17] Zhao, B., and et al. Brocade, Landmark Routing on Overlay
Networks. In IPTPS’02

[18] Zhuang S.Q., Zhao B.Y., and Joseph A.D. Bayeux: An
Architecture for Scalable and Fault-tolerant Wide-Area Data
Dissemination, NOSSDAV’01, New York, USA

