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SOMO: Self-Organized Metadata Overlay  
for Resource Management in P2P DHT 

Abstract – In this paper, we first describe the concept of data 
overlay, which is a mechanism to implement arbitrary data 
structure on top of any structured P2P DHT. With this 
abstraction, we developed a highly scalable, efficient and 
robust infrastructure, called SOMO, to perform resource 
management for P2P DHT. It does so by gathering and 
disseminating system metadata in O(logN) time with a self-
organizing and self-healing data overlay. Our preliminary 
results of using SOMO to balance routing traffic with node 
capacities in a prefix-based overlay have demonstrated the 
utility of data overlay as well as the potential of SOMO. 

1 Introduction 
For a large P2P  overlay to adapt and evolve, there must be a 
parallel infrastructure to monitor the health of the system (e.g. 
“top”-like utility in UNIX). The responsibility of such 
infrastructure is to gather from and distribute to entities 
comprising the system whatever system metadata of concern, 
and possibly serve as the channel to communicate various 
scheduling instructions. The challenge here is that this 
infrastructure must be embedded in the hosting DHT but is 
otherwise agonistic to its specific protocols and performance; 
it must grow along with the hosting DHT system; it must also 
be fault resilient and, finally, the information gathered and/or 
disseminated should be as accurate as possible. 

In this paper, we describe the Self-Organized Metadata 
Overlay, or SOMO in short, which accomplishes the above 
goal. By using hierarchy as well as soft-state, SOMO is self-
organizing and self-healing, and can gather and disseminate 
information in O(logN) time. SOMO is simple and flexible, 
and is agnostic to both the hosting P2P DHT and the data 
being gathered and disseminated. The later attribute allows it 
to be programmable, invoking appropriate actions such as 
merge-sort and aggregation as data flows through. 

Through the development of SOMO, we have discovered that 
there is a consistent and simple mechanism to implement 
arbitrary data structure on top of a P2P DHT. We refer to a 
data structure that is distributed onto a DHT a data overlay. 
Data overlay is discussed in Section-2. Following that, we 
describe the construction and operations of SOMO in Section-
3, and also its application in Section-4. A case study of using 
SOMO to balance routing traffic to node capacity in a prefix-
based overlay is offered in Section-5, along with preliminary 
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results. Related works are discussed in Section-6, and we 
conclude in Section-7. 

2 Data Overlay: Implement Arbitrary Data 
Structures on top of P2P DHT 

We observe that hash-table is only one of the fundamental 
data structures. Sorted list, binary trees and queues etc. all 
have their significant utilities. One way would be to 
investigate how to make each of them self-organized (i.e., P2P 
sorted list). Another is to build on top of a hash table that 
already has the self-organizing property (i.e. P2P DHT). This 
second approach, which we call data overlay, is what we take 
in this paper. 

Any object of a data structure can be considered as a 
document. Therefore, as long as it has a key, that object can be 
deposited into and retrieved from a P2P DHT. Objects relate 
to each other via pointers, so to traverse to the object b pointed 
by a.foo, a.foo must now store b’s key instead.  More formally, 
the following two are the necessary and sufficient conditions: 

•  Each object must have a key, obtained at its birth 

•  If an attribute of an object, a.foo, is a pointer, it is expanded 
into a structure of two fields: a.foo.key and a.foo.host. The 
first substitutes the hard-wired address of a conventional 
pointer; and the second field is a soft state containing the 
last known hosting DHT node of the object a.foo points to 
and serves as a routing shortcut. 

It is possible to control the generation of object’s key to 
explore data locality in a DHT. For instance, if the keys of a 
and b are close enough, it’s likely that they will be hosted on 
the same machine in DHT.  

We call a data structure distributed in a hosting DHT a data 
overlay. It differs from traditional sense of overlay in that 
traversing (or routing) from one entity to another uses the free 
service of the underlying P2P DHT.  

 
Figure 1: implement arbitrary data structure in DHT. 

Figure 1 contrasts a data structure in local machine versus that 
on a P2P DHT. Important primitives that manipulate a pointer 
in a data structure, including setref, deref (dereferencing) and 
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delete, are outlined in Figure 2. Here, we assume that both 
DHT_lookup and DHT_insert will, as a side effect, always 
return the node in DHT that currently hosts the target object. 
DHT_direct bypasses normal DHT_lookup routing and 
directly seeks to the node that hosting an object given its key. 

 
Figure 2: pointer manipulate primitives in data-overlay 

The interesting aspect is that it is now possible to host any 
arbitrary data structure on a P2P DHT, and in a transparent 
way. What need to be modified are the library routine that 
creates an object to insert a key as its member, and the few 
primitives that manipulate pointers as outlined. Therefore, 
legacy applications can be ported to run on top of a P2P DHT, 
giving them the illusion of an infinite storage space (here 
storage can broadly include memory heaps of machines 
comprising the DHT). The host routing shortcut makes the 
performance independent of the underlying DHT when the 
overall system dynamism is small. 

A data overlay on top of a bare-bone P2P DHT with no 
internal reliability support can be used to implement 
distributed data structure that is soft-state in nature (i.e,, data is 
periodically refreshed and consumed thereafter without ill 
side-effect). If advanced fault-tolerant techniques are 
employed, then data overlay can spawn even more interesting 
research threads. For instance, it maybe possible to turn DHT 
into a parallel computing utility by building a globally 
accessible and fully-associative memory heap that as a 
repository of shared-variables [14]. 

3 Self-Organized Metadata Overlay 
We now describe the data overlay SOMO (Self-Organized 
Metadata Overlay), an information gathering and 
disseminating infrastructure on top of any P2P DHT. Such an 
infrastructure must satisfy a few key properties:  self-
organizing at the same scale as the hosting DHT, fully 
distributed and self-healing, and be as accurate as possible of 
the metadata gathered.  

Such metadata overlay can take a number of topologies. Given 
that one of the most important functionalities is aggregation, 
our implemented SOMO is a tree of k degree whose leaves are 

planted in each DHT node. Information is gathered from the 
bottom and propagates towards the root, and disseminated by 
trickling downwards. Thus, one can think of SOMO as doing 
converge cast from the leaves to the root, and then multicast 
back down to the leaves again. Both the gathering and 
dissemination phases are O(logkN) bounded, where N is total 
number of entities. Each operation in SOMO involves no more 
than k+1 interactions, making it fully distributed. We deal 
with robustness using the principle of soft-state, so that data 
can be regenerated in O(logkN) time. The SOMO tree self-
organizes and self-heals in the same time bound. We now 
explain the details of SOMO. 

3.1 Building SOMO 
Since SOMO is a tree, we call its node the SOMO node. To 
avoid confusion, we denote the DHT nodes as simply the DHT 
node. A DHT node that hosts a SOMO node s, is referred to as 
DHT_host(s).  

 
Figure 3: SOMO node data structure 

The basic structure of the type SOMO_node is described in 
Figure 3. The member Z indicates the region of which this 
node’s report member covers. Here, the region is simply a 
portion of the total logical space of the DHT. The root SOMO 
node covers the entire logical space. The key is produced by a 
deterministic function of a SOMO node’s region Z. Examples 
of such functions include the center of the region, or a hash of 
the region coordinates (see Figure 4). Therefore, a SOMO 
node s will be hosted by a DHT node that covers s.key (e.g. 
the center of s.Z). This allows a SOMO node to be retrieved 
deterministically as long as we know its region and is 
particularly useful when we want to query system status in a 
given key-space range. A SOMO node’s responsible region is 
further divided by a factor of k, each taken by one of its k 
children, which are pointers in the SOMO data structure. A 
SOMO node s’s i-th child will cover the i-th fraction of region 
s.Z. This recursion continues until termination condition is met 
(discussed shortly), and since a DHT node will own a piece of 
the logical space, it is therefore guaranteed a leaf SOMO node 
will be planed in it. 

Initially, when the system contains only one DHT node, there 
is only the SOMO root. As the DHT system grows, SOMO 
builds its hierarchy along. This is done by letting each SOMO 
node periodically execute the routine SOMO_grow, shown in 
Figure 4. 

We test first if the SOMO node’s responsible zone is smaller 
or equal to that of the hosting DHT node, if the test comes out 
to be true, then this SOMO node is already a leaf planted in 
the right DHT node and there is no point to grow any more 
children. Otherwise, we attempt to grow. Note that we 
initialize a SOMO node object and its appropriate fields, and 

setref(a.foo, b) { // initially a.foo==null; b is the object 
  // to which a.foo will points to 
  a.foo.key=b.key 
  a.foo.host= DHT_insert(b.key, b) 
} 
deref(a.foo) { // return the object pointed to by a.foo 
  if (a.foo≠null) { 

obj=DHT_direct(a.foo.host, a.foo.key) 
if obj==null { // object has moved 
  obj=DHT_lookup(a.foo.key) 
  a.foo.host = node returned 
} 
return obj 
else return “non-existed” 

  } 
} 
delete(a.foo) { // delete the object pointed to by a.foo 
  DHT_delete(a.foo.key) 
  a.foo=null 
} 

struct SOMO_node { 
  string key 
  struct SOMO_node *child[1..k] 
  DHT_zone_type Z 
  SOMO_op op 
  Report_type report 
} 
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then call the setref primitive (See Figure-2) to install the 
pointer; this last step is where DHT operation is involved. 

 
Figure 4: SOMO_grow procedure and the SOMO_loc procedure 
which deterministically calculates a SOMO node’s key given the 
region it covers. 

As this procedure is executed by all SOMO nodes, the SOMO 
tree will grow as the hosting DHT grows, and the SOMO tree 
is taller in logical space regions where DHT nodes are denser. 
This is illustrated in Figure-5. 

 
Figure 5: SOMO tree on top of P2P DHT 

The procedure is done in a top down fashion, and is executed 
periodically. A bottom-up version can be similarly derived. 
When the system shrinks, SOMO tree will prune itself 
accordingly by deleting redundant children. For an N-node 
system where nodes populate the total logical space evenly, 
there will be 2N SOMO-nodes when the SOMO fan-out k is 2. 

The crash of a DHT node will take away the SOMO nodes it is 
hosting. However, the crashing node’s zone will be taken over 
by another DHT node after repair. Consequently, the 
periodical checking of all children SOMO nodes ensures that 
the tree can be completely reconstructed in O(logkN) time. 
Because the SOMO root is always hosted by the DHT node 
that owns one deterministic point of the total space, that node 
ensures the existence of the SOMO root and invokes the 
SOMO_grow routine on the SOMO root.  

3.2 Gathering and disseminate information with 
SOMO 

To gather system metadata, for instance loads and capacities, a 
SOMO node periodically requests report from its children. 
The leaf SOMO nodes simply get the required info from their 
hosting DHT nodes. As a side-effect, it will also re-start a 

child SOMO node if it has disappeared because the hosting 
DHT node’s crash. Figure 5 illustrates the procedure.  

 
Figure 5: SOMO gathering procedure 

The routine is periodically executed at an interval of T. Thus, 
information is gathered from the SOMO leaves and flows to 
its root with a maximum delay of logkN⋅T. This bound is 
derived when flows between hierarchies are completely 
unsynchronized. If upper SOMO nodes’ call immediately 
triggers the similar actions of their children, then the latency 
can be reduced to T+thop⋅logkN, where thop is average latency of 
a trip in the hosting DHT. The unsynchronized flow has 
latency bound of logkN⋅T, whereas the synchronized version 
will be bounded by T in practice (e.g., 5 minutes). Note that 
O(thop ⋅logkN) is the absolute lower bound. For 2M nodes and 
with k=8 and a typical latency of 200ms per DHT hop, the 
SOMO root will have a global view with a lag of 1.6s. 

Dissemination using SOMO is essentially the reverse: data 
trickles down through the SOMO hierarchy towards the leaves. 
Performance is therefore similar to gathering. By some 
modification, dissemination can piggyback on the return 
message in the gathering phase. The other alternative is to 
query the SOMO tree. Since SOMO is hierarchical, it is easy 
to form complex range queries to discover information 
relevant to a given logical space region. For example, if k is 2 
and we wish to get status report of the first ¼ of the space, we 
need only to obtain report from the left child of the 2nd level 
SOMO tree. An even more interesting alternative will be to 
register queries at SOMO nodes, which essentially transforms 
SOMO into a pub/sub infrastructure. 

Operations in either gathering or disseminating phases involve 
one interaction with the parent, and then with k children. Thus, 
the overhead in a SOMO operation is a constant. The entities 
involved are the DHT nodes that host the SOMO tree. SOMO 
nodes are scattered among DHT nodes and therefore SOMO 
processing is distributed and scales with the system.  

It seems that towards the SOMO root the hosting DHT nodes 
need to have increasingly higher bandwidth and stability. As 
discussed earlier, stability is not a concern because the whole 
SOMO hierarchy can be recovered in O(logkN) time. As for 
bandwidth, most of the time one needs only to submit delta 
between reports (Figure 5). Compression will further bring 
down message size. Finally, it is always possible to locate an 
appropriate node through SOMO. This node can swap with the 
one who is hosting the SOMO root currently. That is to say, 
SOMO can be self-optimizing as well. 

3.3 Discussion 
The power of SOMO lies in its simplicity and flexibility: it 
specifies neither the type of information it should gather 
and/or disseminate, nor the operation invoked to process them.  

get_report (SOMO_node s) { 
  Report_type rep[1..k] 
  for i∈ [1..k] 

if (s.child[i] ≠ NULL) // retrieving via DHT 
  rep[i] = deref(s.child[i]).report 

  s.report = s.op(rep[]) 
} 

SOMO_grow(SOMO_node s) { 
 // check if any children is necessary 
  if (s.Z⊆ DHT_host(s).Z) return 
  for i=1 to k 

if (s.child[i]==NULL && 
     the i-th sub-space of s.Z ⊄  host(s).Z) { 
    t = new(type SOMO_node) 
    t.Z = the i-th sub-space of s.Z 
    t.key = SOMO_loc(t.Z) 
    setref(s.child[i], t) // inject into DHT 
} 

} 
SOMO_loc(DHT_zone_type Z) { 
  return center of Z 
  // optionally 
  // return hash_of (Z) 
} 

Total logical space SOMO node 

reportlastreportthis __ ∩=∆

DHT node 
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That is to say, SOMO operations are programmable and active. 
For this reason, in the pseudo-code we have used op as a 
generic notation for operation used. Using the abstraction of 
data overlay (especially the host routing shortcut), its 
performance is also insensitive to the hosting DHT.  

We have described SOMO in a collaborative environment to 
start with. If there are malicious nodes, then the 
trustworthiness of SOMO itself is under doubt. We offer some 
of our preliminary thoughts here: 

•  Denial-of-service attacks can be mounted by relentlessly 
requesting SOMO root. We believe an efficient way to 
defend against this is by propagating copies throughout the 
network, thereby stopping the attacks on the system edge. 
This borrows the idea from Freenet[2]. 

•  SOMO reports can be compromised in multiple ways on the 
paths of aggregation and dissemination. To guard against 
this, reports must be signed and redundant SOMO reports 
need to be generated through multiple SOMO internal nodes, 
and use voting for consensus and intruder detection.  

•  Finally, the most difficult attack to solve is that individual 
node can simply cheat about its own status. Feedback 
processes among peers external to SOMO should be used to 
establish trustworthiness of each node. 

4 Application of SOMO 
As a scalable, fault-tolerant metadata gathering and 
dissemination infrastructure, the utilities of SOMO are many. 
In a large scale system, the need to monitor the health of the 
system itself can not be understated. We have implemented a 
SOMO-based global performance monitor with which we 
monitor the servers in our lab on a daily basis. This tool 
employs SOMO built over a P2P DHT and gathers data from 
various performance counter on each machine and presents a 
unified UI interface to clients. We tested the SOMO stability 
by unplugging cables of servers being monitored, and each 
time the global view is regenerated after a short jitter. Using 
the data overlay abstraction, the SOMO layer is implemented 
much like any local procedures, with only a few hundred lines 
of code.  

More advanced usages are chiefly decided by algorithms that 
built upon the metadata that gathered. It is possible to build a 
SOMO on top of a basic, mesh-based P2P DHT, and then 
build a O(logN) soft-state prefix-based overlay by installing 
long-range entries because SOMO provides the knowledge of 
what nodes exist in what portion of the total logic space. Even 
more useful is the fact that SOMO can create an image of a 
single resource pool comprised of nodes forming the DHT.  

Another instance would be to find powerful nodes, commonly 
known as supernodes. To do this, we will make a SOMO tree 
where the report type is sorted list, and the op is merge-sort. 
Thus, SOMO can mine out multiple classes of supernodes, as 
reports available at various internal SOMO nodes, with the 
SOMO root having the complete list. These supernodes can 
thus act as indexing [6] or routing hobs [17]. There are also 
proposals where routing performance is the best but storage 
uniformity is sacrificed [8], SOMO can discover the density 

map of node capacities. Such information can guide document 
placement, or migrate nodes from dense regions to weak ones.  
In this way, uniformity will improve over time. We have also 
mentioned the possibility of turning SOMO into a pub/sub 
infrastructure. 

5 Case Study: Balancing Routing Power with 
Routing Traffic in Prefix-Based Overlay 
Prefix-based overlay includes Tapestry[16], Pastry[9], 
Chord[11], Kademlia[5] and eCAN[13] (CAN[7] with simple 
extension). Though some aspects of these proposals differ, 
they share a few key attributes: 1) the total logical (or key) 
space is recursively divided and 2) routing greedily seeks out 
the biggest span into a sub-space and then zoom in towards 
target quickly. Routing table of prefix-based overlay is an 
array, recording spaces of exponentially decreasing size and 
one or several nodes that serve as this node’s gateway, or 
“router” into these spaces. The flexibility of the prefix-based 
overlays is that, any node in the target sub-space can be a 
router. This gives rise to many optimization opportunities. 
Pastry and eCAN explore the possibilities of using the 
geographically closest node as router candidates to improve 
routing performance. In this paper, we report our investigation 
on another complementary axis: choosing the more powerful 
nodes to serve as routing entrances for larger sub-spaces 
where traffics are exponentially more than sub-spaces further 
enclosed. The ultimate solution (and challenge) of selecting 
these “routers” is to consider all the following three factors: 
geographic vicinity, routing capacity and load distribution. 
This remains to be one of our future works. 

Our goal is to promote the most capable nodes to handle 
traffics into larger space, relieving weaker nodes off these 
responsibilities. Intuitively, the most powerful nodes will take 
the bulk of the loads in the largest enclosing space, and the 
weaker ones will serve no more than those designated to its 
immediate neighbor. Due to space limitation, we refer readers 
to [15] for the full protocol. Our basic idea is to classify 
routing loads that a node takes according to the sub-space in 
which the routing is designated and divide a node’s routing 
capacity accordingly. The end-goal is that each sub-space’s 
load/capacity ratio approaches that of the whole system. 

Our optimization consists of four algorithms:  

•  Statistic collection algorithm. Aggregate loads and 
capacity statistics in a bottom-up sweep through SOMO. 
The goal is to have a “view” of the demographic distribution 
of both loads and capacities. At this point, the load/capacity 
ratios of the whole system as well as all enclosing spaces are 
available. 

•  Load balance algorithm. Top-down sweep to determine 
the amount of routing capacities to be dedicated in each 
space, so that its load/capacity ratio approaches to that of the 
whole system where possible. 

•  Capacity selection algorithm. Select the right portion of 
capacities, as recommended by the previous step, from 
candidate nodes. Also bottom-up sweep. At the end of this 
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algorithm, we have selected the right capacity divide 
responsible for traffic loads of different space. 

•  Entries dissemination algorithm. Notify other nodes to 
use these new “routers” so that load distribution can take 
effect.  

The core of our algorithm is in the 2nd and the 3rd step. It can 
be simplified if not for a subtle but important issue. The load 
and capacity distribution can be so skewed that nodes in a sub-
space are already overwhelmed by the traffic designated to 
them, leaving them virtually no surplus power to share routing 
duties in enclosing spaces. Our scheduling algorithm has taken 
this into full account by pardoning heavily loaded sub-spaces 
(or the ones with meager power).  

We modify an earlier e/CAN simulator by incorporating all 
the four algorithms described earlier. eCAN[13] is a prefix-
based overlay capable of O(lnN) routing performance, and this 
is achieved with simple extension to CAN[2]. In eCAN, the 
recursion in resolving routing is by zooming into topology 
sub-zones rather than shifting bits. However, our algorithm is 
immediately applicable to other prefix-based overlays such as 
Pastry [9], Tapestry [16] and Kademlia [5]. 
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(b) Zipf-like 

Figure 7: Capacity profile (N=2K) 

Two capacity profiles are used to model heterogeneity:  

� Zipf-like:  when sorted, the i-th node has capacity 
10000·i-β, we choose β be 1.2 by default. 

� Gnutella-like:  there are 5 levels of node, and the i-
th level has capacity 10i-1, popularity in these levels 
are 20%, 45%, 30%, 4.9% and 0.1%, going from 
level 1 to level 5 (see [10]). 

The comparison of the two distributions for a 2K node system 
is shown in Figure 7. 

The eCAN configuration we use is equivalent to 
Pastry/Tapestry of b=1. We tested other configurations [15] 
and results are similar to those presented here. For each 
configuration (capacity profile, N and other parameters), an 
experiment of 5 cycles is run. Each cycle starts with a 
complete reshuffling of the node capacities, then route 100N 
times, during which load and capacity information are 
gathered. We then run the four algorithms to perform load 
balance. Finally another 100N routings are performed and 
various statistics are collected again. This somewhat primitive 
setup allows us to gain sufficient insight of the algorithms; a 
more sophisticated one would include node join and leave 
events and mix SOMO traffics with normal routing, which we 
plan to conduct in the future. 

We found that, in all configurations, load balance converges 
quickly in O(log N) time, and that after the full set of the 

algorithms are run, higher capacity nodes are taking more 
loads. Figure 8 and Figure 9 show a typical pair of results of 
the Gnutella-like and Zipf-like capacity distributions, 
respectively. Note the sharp difference before and after the 
load redistribution. 

�

��

���

����

�����

������

� �� ��� ���� �����

���������	
��

�
�
�
�
�
�
�
�
�

              (a) Before 

�

��

���

����

�����

������

� �� ��� ���� �����

���������	
��

�
�
�
�
�
�
�
�
�

 
(b) After 

Figure 8: Results of N=2K, Gnutella-like (the line 
corresponds to average load of a capacity level) 
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(b) After 

Figure 9: Results of N=2K, Zipf-like 

6 Related work 
Data overlay relies on the key property of the P2P DHT 
([9][16][11][7][5][13]) that an item with unique key can be 
reliably created and retrieved. To our knowledge, extending 
the principle of self-organizing to arbitrary data structure other 
than hash table and do it in a way that is agnostic to both 
semantics and performance of the hosting P2P DHT is new.  

A pure “peer-to-peer” mindset will view hierarchy as 
forbidden word. We believe this is misleading as important 
functionalities such as aggregation and indexing [6][1] 
inherently imply a hierarchical structure. On this, SOMO 
bears the most similarity to Astrolabe [12], a peer-to-peer 
management and data mining system, for instance the use of 
hierarchies and aggregation. SOMO operates at the 
rudimentary data structure level while Astrolabe is on a virtual, 
hierarchical database. SOMO’s extensibility is much like that 
of active network, whereas Astrolabe uses SQL queries. The 
marked difference is that SOMO is designed specifically on 
top of P2P DHT, for two reasons: 1) we believe P2P DHTs 
have established a foundation over which many other systems 
can be built and thus there is a need for a scalable resource 
management and monitoring infrastructure and 2) by 
leveraging P2P DHT (in fact, data overlay) the design and 
protocols of such infrastructure can be much simpler. 
Distributed, in-network query processing has also been 
investigated in apparently unrelated fields such as sensor 
network, though the emphasis there is quite different [2]. 

The other alternative to build an aggregation and 
dissemination tree would be to use the application-level 
multicasting tree such as the one proposed by Scribe [2] and 
Bayeux [18]. These trees are formed by joining routes from 
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individual nodes to the root and, as a result, are unstructured 
as opposed to SOMO.  The maintenance of the tree would 
either require each tree node to keep states in the form of 
pointers to its children, or let DHT nodes route to the root 
periodically to refresh the tree structure. In SOMO, every node 
is uniquely identified by the region that its report covers and 
therefore requires zero states. The structured nature of SOMO 
also allows queries to arbitrary sub-region of the total space, 
which would be otherwise impossible. 

7 Conclusion and Future work 
This paper makes several novel contributions: we describe 
how arbitrary data structures can be implemented on P2P DHT 
using the concept of data overlay; we designed and evaluated 
a self-organizing and robust metadata gathering and 
dissemination infrastructure SOMO. We have demonstrated 
how to balance routing traffic with node capacity in prefix-
based overlay using both of these two techniques. Our future 
work includes more extensive study of these concepts. 
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