
Efficient Peer-To-Peer Searches Using Result-Caching

Bobby Bhattacharjee, Sudarshan Chawathe, Vijay Gopalakrishnan, Pete Keleher, Bujor Silaghi
{bobby, chaw, gvijay, keleher, bujor}@cs.umd.edu.

1 Introduction

Existing peer-to-peer systems implement a single function
well: data lookup. There is now a wealth of research describ-
ing how to reliably disseminate, and to later retrieve, data in a
scalable and load-balanced manner.

However, searching has received less attention. The current
state of the art is to distribute inverted indexes in the name
space. Intersection of distributed sets can be made more effi-
cient by exchanging bloom filters prior to moving objects [2].

This paper proposes an orthogonal and complementary tech-
nique: using result-caching to avoid duplicating work and data
movement. For example, assume that indexes ai, aj , and
ak are located on distinct nodes in the network. Computing
ai ∧ aj ∧ ak directly from these indexes is much more expen-
sive than intersecting the result of a prior ai ∧ aj operation
together with ak.

The main contribution of the paper is a new data structure,
the view tree, that can be used to efficiently store and retrieve
such prior results. These results, which can also be thought of
as materialized views, can then be used to efficiently answer
future queries. Note that object attributes could either be de-
rived from application semantics (e.g. meta-data from files in a
filesystem) or computed via techniques such as latent semantic
indexing.

1.1 Data and Query Model

We assume that each data item in the namespace has a unique
name, and has some searchable meta-data associated with it.
We assume the meta-data is represented as an ordered set of
attribute-value pairs. The attributes may be boolean or may be
real valued. It is possible to extend our search scheme to han-
dle more complex meta-data schemes, including hierarchically
arranged attribute trees, but we do not consider this extension
in this paper.

Our queries have the form (ai ∧ aj ∧ . . . ∧ ak) ∨ (bi ∧ bj ∧
. . . ∧ bk) ∨ . . . ∨ (ni ∧ nj ∧ . . . ∧ nk). The solution to such a
query is the union of the solutions of each conjunctive clause.
For example, if the query is (a ∧ b) ∨ (b ∧ c), where a, b, c are
boolean predicates, then the result is the union of the items that
have either attribute (a∧b) or attribute (b∧c). We use the term
“view query”, or just “query”, to refer to such boolean queries,

and the term “view” to refer to a set of namespace elements
that satisfy a particular view query.

The rest of the paper is organized as follows. Section 2
presents the details of our search algorithm, together with the
creation and maintenance of the view tree. Section 3 describes
preliminary results, Section 4 discusses prior work, and we
conclude in Section 5.

2 The View Tree

The core of our method works with conjunctive queries.
Queries with disjunction are first converted to disjunctive nor-
mal form (disjunction of conjunctions), and each conjunction
is evaluated as a separate conjunctive query. The results of the
conjunctions are cached separately. For example, the evalua-
tion of the query (a ∧ b) ∨ (b ∧ c) results in two views being
cached: (a ∧ b) and (b ∧ c). These views can subsequently
be used to answer the original query, and also other queries
that contain these views. Henceforth, we shall discuss only
conjunctive queries.

The views corresponding to conjunctive queries can be lo-
cated by searching for the view using a canonical representa-
tion. In a distributed hash tree (DHT), the views are stored at
nodes where the hash of the canonical name maps to. For ex-
ample, in Chord, the view a ∧ b is stored at the successor of
H(“a ∧ b”). Note that the same technique is used to find the
nodes where each attribute index should be stored. In a hierar-
chical system, the views can be stored in a hidden part of the
name tree with each view stored at the server that initially cre-
ates the view. Obviously, more sophisticated techniques that
balance the storage load can also be used in a hierarchical sys-
tem. In both cases, views are located by searching the names-
pace using the canonical representation.

Unfortunately, merely storing each view in the namespace
with a canonical name is not sufficient to efficiently answer
view queries, even if the underlying namespace can very ef-
ficiently locate each materialized view. For a single conjunc-
tive query a1 ∧ a2 ∧ . . . ∧ ak with k attributes, the number
of views that are useful for evaluating the query is exponen-
tial in k. Clearly, for moderately large k, it is not feasible to
search the namespace to for each of these views to determine
which ones exist. One solution is to maintain a central, consis-

1



tent list of currently materialized views. Useful views that are
materialized can then be obtained by locating this list in the
namespace. The problems with a naive central list are many
and obvious. For example, it has to be updated whenever any
new view is created or destroyed in the system, which can hap-
pen whenever a new query is satisfied or when a node storing
a view fails. Further, the storage required at the node holding
the list is of the order of the number of views in the system.

Therefore, we propose the view tree for maintaining a dis-
tributed snapshot of the set of currently materialized views.
The view tree can be traversed to find all relevant views for a
particular query. The view tree can easily be implemented as
a trie and, as we discuss later, does not have the state and up-
date scalability problems of a central list solution. An example
of a view tree is depicted in Figure 2. Nodes in the view tree
are labeled with attributes. To locate the node at which a view
a1a2 . . . ak is stored, we descend from the root of the view
tree, in standard trie manner, first to the child labeled a1, then
to its child labeled a2, and so on. If this process stops before
we reach the end of the string representing the view, the view
is stored as a child of the last node reached. Thus, the view
tree is a trie in which each node that has no siblings is merged
with its parent.

Since we wish to always provide efficient attribute-based ac-
cess to objects, we require that all single-attribute views be
materialized. There are therefore as many nodes at depth one
in the view tree as there are attributes in our domain, and each
node stores the view for the corresponding attribute. Thus, the
method for adding a node to the underlying namespace is aug-
mented to also update the index for each attribute that is part
of the new node’s meta-data. Similarly, these attribute indexes
are also updated as nodes are deleted from the namespace.

We define a canonical order on the attributes and use this
order to uniquely identify equivalent conjunctive queries (and
views). For example, assuming an alphabetic ordering of at-
tributes, a ∧ b and b ∧ a map to the canonical form a ∧ b (or
simply ab in our abbreviated notation). Henceforth, we will
assume that all queries and views are in canonical form. Since
the canonicalization is performed by the system, this assump-
tion is without loss of generality and is transparent to the user
of our system.

2.1 Answering Queries using the View Tree

Given a view tree and a conjunctive query over the attributes,
finding the smallest set of views to evaluate the query (using
only the views) is NP-hard even in the centralized case (by
reduction from Exact Set Cover [10]). Thus, an exact solution
is not practical, especially in a distributed setting. Instead, we
use the following guidelines for a method for locating views
for answering a query: (1) exact match - If a view that matches
the query exactly exists, that view must be located. (2) forward
progress - If there is no exact match, then each view tree node
that is visited must result in locating a view that contains at

1: Let {n′ : p(n′) = n} = {c1, . . . , cn}
2: qw ← q
3: rw ← ∅
4: loop
5: if qw = ε then
6: return rw

7: else
8: Let qw = a1 . . . am

9: if 6 ∃i, j, s1, s2 : s1‖ai‖s2 = r(cj) then
10: return rw

11: else
12: (i∗, j∗) ← min{(i, j) : ∃s1, s2 : s1‖ai‖s2 =

r(cj)}
13: rw ← rw ∪ {r(cj∗)}
14: r′ ← S(cj∗ , ai∗+1 . . . am)
15: qw ← qw 	 r′

16: rw ← rw ∪ r′

17: end if
18: end if
19: end loop

Figure 1: Search for query q at node n: S(n, q)

least one attribute from the query that does not occur in the
views located so far.

Our search algorithm is outlined in Figure 1. We use p(n) to
denote the parent of a node n, l(n) to denote the string formed
by the concatenation of attributes indexed at n, and r(n) to de-
note the suffix of l(n) such that l(n) = l(p(n))‖r(n). We use
the notation s 	 X to denote the string obtained by deleting
from s the characters that occur in set X . Given a query q, the
algorithm is invoked as S(r, q), where r is the root of the view
tree. The computation at a node n (i.e., S(n, q)) is based on
selecting a set of suitable children to which the computation
is propagated (recursively). Results from the children indicate
the attributes of q that have been covered. As noted earlier, an
exhaustive search is impracticable. It is easy to verify that the
test on line 12 ensures that both the conditions in our guide-
lines (exact match and forward progress) are satisfied. The
rest of the pseudo-code is concerned with bookkeeping of the
attributes of the query that have been covered by the views en-
countered so far.

For example, Figure 2 shows a search for “cbagekhilo”,
which proceeds as follows. The algorithm first locates the best
prefix match, which is “cbag” in this case. Even though the
next clause in the prefix, “cbage” has not been materialized,
the “cbagh” child of “cbag” is useful for this query, and thus
this node is visited next. The algorithm is now in the “forward
progress” component of the search and proceeds in depth-first
manner visiting nodes that add more unresolved literals.

2



map(aceg)

cb

gaec

ca

a b c d e

aceg

f g h

cbg cba cbe

/

i k l n o

ce

cbag

cbagh cbagi cbehl

cbeh

cbaghi cbehlo

loga

gac gae

1. view (aceg) joins
2. search for (cbagekhilo)

Figure 2: Example of a node joining the View Tree.

2.2 Creating a Balanced View Tree

In our description, we have implicitly assumed that a view of
the form (a∧b∧. . .∧x) can only be part of the subtree starting
at a, since a occurs first in the canonical representation of (a∧
b∧ . . .∧x). This will result in well-defined trees, but they will
be heavily imbalanced with most of the views stored under
the attributes which occur first in the canonical representation.
For example, all views of the form a ∧ . . . ∧ x will be stored
under the a subtree. Obviously, a view of the form (a ∧ b ∧
. . . ∧ x) can equally well be stored under a clause of the form
(b ∧ . . . ∧ x) under the b subtree and so on. However, doing
so will not allow us to efficiently locate this materialized view,
since again, there are an exponential number of sub-views that
are potential parents of this clause.

We solve this tree-imbalance problem as follows: Let E rep-
resent the clause (a∧ b∧ c∧ . . .∧ x) which we want to add to
the view tree. First, we deterministically pick a permutation P
of E uniformly at random among all the possible permutations
of E . For example, the clause (a ∧ b ∧ c) will be mapped with
same 1/6 probability to the (a∧b∧c), (a∧c∧b), etc. There are
well known methods for generating random permutations, e.g.
by exchanging array elements initialized with the array index,
which can be used to generate random permutations determin-
istically. We then place the view P in the view tree such that
the parent of P is the longest existing prefix of P .

We illustrate this scheme in Figure 2. Suppose a∧ c∧ e∧ g
deterministically maps to g ∧ a ∧ e ∧ c. This clause is now
added to the view tree under its best current prefix in the tree,
which is g ∧ a ∧ e. We discuss how the tree is maintained as
new clauses are added below.

2.3 Maintaining the View Tree

The view tree must be updated to reflect new materialized
views. This is done when a view is materialized using the
procedure described in Section 2.2. The tree must also be up-
dated when nodes holding already materialized views depart,
or when views are simply discarded.

map(aeg)

ba

eagc

bc

b
aeg

e

bac bag bae

/

be ea

eab eag

a c g

Figure 3: Maintaining the tree when a new node joins.

Tree integrity requires that the owner of a new node up-
dates all attribute indexes corresponding to attributes of the
new node. If the application requires this new node must be
part of each resolved query immediately, then the node owner
must also traverse each attribute subtree and update all existing
materialized views before the node is added to the system. The
view tree provides exactly the pointers that must be traversed
for these updates. Further, the tree has the property that in or-
der for a node to be updated, the entire path to the root must
also be updated. Thus, if the update ever reaches a view that
it does not need to update, it can discard the entire subtree un-
der this view. For most applications, it is probably sufficient to
only update the attribute indexes, and not update any of the ma-
terialized views. In this case, the materialized views should be
periodically refreshed using its parent node and other appro-
priate view searches. For these applications, new nodes will
not appear in a few queries immediately after they are added
to the system.

We use a soft state refresh to maintain the integrity of the
view tree. Child views periodically send heartbeat messages
to their parent node in the view tree. If these messages are not
received for a timeout period, the parent node simply discards
state for the child view (and correspondingly its entire subtree).
If a parent node is not alive, then the child re-inserts itself in
the view tree.

Lastly, as views are added to the system, the child pointers
need to be reassigned. Figure 3 shows a new clause, “aeg”,
being added to the tree. The deterministic permutation maps
“aeg” to “eag”, and the exact prefix “ea” is found in the tree.
The old child of “ea”, “eagc”, now becomes a child of the
newly inserted node “eag”.

3 Preliminary Results

This section presents preliminary results from simulations of
the algorithms described above. We begin with a description
of the data and query sources we used in the simulations along
with the methodology we employed in deriving the input to

3



drive our simulations.

3.1 Data Source and Methodology

We chose a random sets of documents from the TREC-Web
data set as the source data for our experiments. We used
HTML pages that exported the keyword meta-tag, and nom-
inally used 64K different pages for each experiment.

We ran each experiment with 500,000 queries; this number
was sufficient in all experiments for the caching behavior to
stabilize. The queries were generated as follows: we first chose
a representative sample of WWW queries from the publicly
available search.com query database1. Unfortunately, the
search.com query set does not provide an associated doc-
ument set over which these queries would be valid: instead,
we generated queries with the same statistical characteristics
as the search.com queries using keywords from the TREC-
Web data set. Specifically, we used the search.com queries
to generate the distribution of number of attributes per query.

Next, we use the distribution of keywords in the set of source
documents to map keywords to each attribute. For multi-
attribute queries, we generated the set of 10,000 most popular
keyword digrams, trigrams, etc. and used these, uniformly at
random, as the input query set for multi-attribute queries. Note
that the popular 10,000 covered all possible multi-attribute
queries with non-null results for our source data.

For each experiment, we use a “working set”, which is a set
of unique queries to which some fraction of overall queries are
directed. Nominally, we used a working set of size 50,000 to
which 90% of the queries were directed. All queries (includ-
ing the queries in the working set) were generated using the
scheme described above; however, 90% of the queries were
always directed to the queries in the working set, while 10%
were unconstrained.

We also model updates to the data. Specifically, we con-
sider the cases when attributes are added from, deleted from,
and changed in existing documents. New attributes, for both
addition and updates, are chosen using the original keyword
distribution generated from the complete source data set. For
deletion, attributes are selected uniformly at random. It is not
clear exactly what the rate for such updates should be.

Our primary metric is the number of tuples intersected when
answering multi-attribute queries. If an exact result is required,
then the number of tuples intersected is also an upper bound on
the number of tuples that must be transferred between hosts.

Both single- and multi-attribute indexes have to be updated
as data items are added, updated, or removed from the names-
pace. We present results for the number of messages that are
required to update the attribute indexes; we specifically ac-
count for the number of messages that are sent directly as a

1We were also given access to 32K WWW queries by the IRCache project,
and the query characteristics of the IRCache and search.com queries were
comparable. We ran simulations with both data sets with similar results; we
only present results from the (larger) search.com query set here.

0

0.2

0.4

0.6

0.8

1

1-level 2-levels 3-levels 4-levels 5-levels all-levels

fr
ac

tio
n 

of
 tu

pl
es

 e
xc

ha
ng

ed

levels of caching

Figure 4: Caching benefit by level

result of maintaining the view tree. Once again, we assume
the worst case scenario in which each index is hosted by a dif-
ferent host. Thus, the overheads we present represent an upper
bound on the number of messages and tuples that would have
to be transferred in a deployed system.

3.2 View Tree Results

In our first result, we investigate the benefit of maintaining
the view tree by simulating keyword searches over this data
set. These experiments were run using our base parameter
set: there were 500,000 total queries, 90% of which go to a
working 50,000 queries, and the rest are chosen uniformly at
random. In Figure 4, we show how the number of tuples in-
tersected decreases as multi-attribute query results are cached.
The x-axis shows the maximum depth of the view tree (e.g.
depth 3 implies results of only two and two-attribute queries
are cached). The y-axis is a measure of the benefit from main-
taining the view-tree, and shows the normalized number of tu-
ples transferred for each level of caching. For the normaliza-
tion, we use the number of tuples transferred for the single at-
tribute indexes only case as unity. From the plot, it is clear that
there is potentially an immense benefit to maintaining a view
tree: keeping only the second-level indexes reduces the num-
ber of tuples transferred by 92%. Extra levels of caching fur-
ther reduces the intersection overhead by a further 30% com-
pared to the two-level only caches (to less than 95% of the
original). In terms of the actual number of tuples, the single-
attribute indexes required 486M tuples to be intersected in to-
tal (972 tuples intersected/query). The two-level and all caches
required 37M and 26M tuples intersected respectively. Recall
that for exact queries, these numbers represent an upper bound
on the number of tuples that have to be transferred over the
network; for approximate methods, the number of tuples inter-
sected is a lower bound on the amount of processing per query.

Obviously, the number of tuples that must be stored at each
host increases as more indexes are maintained. For these ex-
periments, the amount space required increased by a factor of

4



0

0.1

0.2

0.3

0.4

0.5

0.6

random 50% 90% 99%

fr
ac

tio
n 

of
 tu

pl
es

 e
xc

ha
ng

ed

degree of locality

Figure 5: Effect of locality on caching efficiency

3.06 (0.6M tuples stored for the single attribute indexes vs.
1.84M tuples stored in 55K different multi-attribute caches for
caching all levels) in the worst case. The two-attribute queries
themselves require 1.5M tuples in 30K caches, which, in terms
of tuple storage, is about 70% of all the multi-attribute queries.
The two attribute indexes consume most space since the in-
dexes with more attributes tend to be smaller as it is less likely
that documents will export the same three or more keywords.

An interesting footnote from our experiments was that the
number of cache hits monotonically decreases (by about 25%
as the caching level is increased from 2 to all) as the level of
caches is increased. This is because with more caches, queries
have a higher probability of a direct cache hit in a cache with
many attributes; however, with only a subset of caches, the
popular subqueries get used over and over again.

3.3 Query Locality

It is important to understand exactly how sensitive our results
are to the degree of locality in the query stream. In our base
experiments, we choose a working set of 50,000 queries, and
direct 90% of all queries this working set. In this experiment
(Figure 5), we quantify the benefits from result caching as the
degree of locality is varied. The x axis represents the degree
of locality: specifically, it shows what fraction of the queries
were chosen from the working set of 50,000 queries2. The rest
of the queries are chosen uniformly at random. For the left-
most set of points, all queries are chosen uniformly at random,
i.e. there is no locality in the query stream. The y-axis shows
the normalized benefit from maintaining a full view tree (i.e. it
is the ratio of the number of tuples intersected with and without
a view tree).

We should note that the number of caches created for dif-
ferent localities vary by an order of magnitude (288K caches
for no locality vs. only 29K caches when 99% of the queries
are directed to the working set). There are only 64K cache hits

2We have experimented with other working set sizes, and these results are
representative.

in case of the random queries, thus, the view tree is of limited
use when the query stream is random. However, even the ran-
dom set of queries do get some benefit from the view tree (50%
reduction in the number of intersected tuples). This is some-
what counterintuitive, since there is no locality in the queries.
The benefit derives from the observation that even though the
queries themselves are uncorrelated, there is correlation in the
individual attributes that make up the queries. The attributes
are chosen using their distribution in the exported keywords,
and thus, the view tree becomes useful. We did conduct exper-
iments in which both the queries and attributes are chosen uni-
formly at random. As expected, in this case, there is no benefit
from the view tree; further, the vast majority of multi-attribute
queries result in zero or a very small number of tuples.

3.4 View Maintenance: Updates

In the previous two results, we have shown that result caching
reduces query resolution overhead, and is relatively robust as
long as there is reasonable locality in the input. In this section,
we show that the update overhead of the view tree is essen-
tially negligible for almost all deployment scenarios. In Ta-
ble 1 we report the number of caches updated, and the number
of distinct nodes visited, over two 100,000 query simulations
with different input distributions, and query vs. update ratios.
“Update hops” includes the cost of finding caches via the view
tree. In these simulations, attributes (keywords) are added or
deleted from documents, and these updates are reflected in ev-
ery cache that holds a pointer to this document. In the worst
case scenario, there are only ten queries in the entire system
before an attribute is changed in some document. Note that in
the first row (1:10), there are 10,000 updates during the course
of the simulation. The effect of locality in the query stream
is apparent: query locality reduces the number of caches, but
increases the overall update overhead to a popular document
now has to update multiple caches. Specifically, the updates
with a random query stream results in, on average, 3 different
caches being updated, while the query stream with locality has
to update approximately 10 different caches, again on average.
Thus, in the worst case, each update would cause a single tuple
to be transferred to ten different hosts. In practice, overheads
will be lower since updates will be batched, and the update to
query ratio is likely to be very low for most data.

4 Previous Work

Most closely related to this work are other efforts to provide
a search infrastructure over peer-to-peer systems. Harren et
al. [1] propose traditional relational database operators on top
of DHT-based systems to resolve queries. Reynolds and Vah-
dat [2] discuss a search infrastructure using distributed in-
verted indexing. Each entry corresponds to a keyword and
the set of documents that contain the keyword. Each node

5



Update:Query 90% locality Random Queries
ratio #Caches #Update Hops #Caches #Update Hops
1:10 28244 106683 62607 33758

1:100 28253 10774 62619 3430
1:1000 28255 923 62608 296

Table 1: Update overhead for 100,000 queries. 90% locality refers to 90% of the queries directed to the 50K working set.

in the system is responsible for all keywords that map the
node. Tang et al. [4] argue for context-based and semantic-
based text searches on top of DHTs. They extend vector space
model (VSM) and latent semantic indexing (LSI), and support
keyword-based queries. Annexstein et al. [5] argue for com-
bining text data to speedup search queries, at the expense of
more work done attaching/ detaching a node to a super-node.
The indexes are kept as suffix trees. Kubiatowicz [3] proposes
to use transactional query support. The set cover problem and
a greedy approximation algorithm is discussed by Cormen et
al. [10].

5 Summary and Discussion

This paper presents the design of a scalable and efficient search
infrastructure using a new structure called the view tree. Our
preliminary results show that 1) use of result caches can elim-
inate the vast majority of tuples retrieved across the network
for queries with multiple terms, 2) result caches are effective
even with no locality in the query stream (but with locality in
the distribution of attributes across documents), and 3) update
cost should be relatively insignificant.

In addition to testing with a wider variety of input data, we
need to address a number of significant issues before a real
system can be designed. These issues include result cache
placement policies, result cache replacement policies, fault tol-
erance, availability, and interactions with the underlying DHT
system. Finally, both application consistency requirements and
available system resources should ideally be taken into account
by view maintenance policies. Cached results, and even the
basic distributed index scheme, also open up a wealth of new
security problems.

References

[1] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker,
and I. Stoica, “Complex queries in dht-based peer-to-peer net-
works,” in The 1st International Workshop on Peer-to-Peer Sys-
tems (IPTPS), Cambridge, MA, March 2002.

[2] P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword
Searching,” unpublished.

[3] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao., “Oceanstore: An architecture for global-
scale persistent storage,” in Proc. of the 9

th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, Cambridge, MA, November 2000, pp.
190–201.

[4] C. Tang, Z. Xu, and M. Mahalingam, “pSearch: Information
retrieval in structured overlays,” SIGCOMM Computer Commu-
nication Review, vol. 33, no. 1, January 2003.

[5] F. S. Annexstein, K. A. Berman, M. Jovanovic, and K. Pon-
navaikko, “Indexing techniques for file sharing in scalable peer-
to-peer networks,” in Proc. the 11

th IEEE International Confer-
ence on Computer Communications and Networks, Miami, FL,
October 2002.

[6] B.H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Communications of the ACM, 13(7):422-426, 1970.

[7] M. Stonebraker, “Concurrency control and consistency of mul-
tiple copies of data in distributed INGRES,” IEEE Transactions
on Software Engineering, vol. 5, no. 3, pp. 188–194, May 1979.

[8] P. Slavik, “A tight analysis of the greedy algorithm for set cover,”
in ACM Symposium on Theory of Computing, Philadelphia, PA,
May 1996, pp. 435–441.

[9] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation
with nearly optimal communications complexity,” in IEEE In-
ternational Symposium on Information Theory, Washington DC,
June 2001.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms, MIT Press, Cambridge, Massachusetts, 1997.

[11] I. Wegener, The Complexity of Boolean Functions, John Wiley
& Sons Ltd., and B.G. Teubner, Stuttgart, July 1987, ISBN: 0-
471-91555-6.

6


